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LETTER TO THE EDITOR 

Flux infiltration into soils: analytic solutions 
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i Dipattimento di Fisiw, Universitb di Roma ‘La Sapienn’, 00185 Roma, Italy and Istimb 
Nazionale di Rsiu Nuclwe, Sedone di Roma, Roma, Italy 
t Dipmtimento di Fisiw, Universia di Pmgis 06100 Perugis Italy and lsfituto Nazionale di 
Fisica Nuclwe, Sezione di Pen& Peru@& Italy 

Received 5 November 1993 

Abstract The Burgers model for flux infilInXion into a semi-infinite soil is solved for generic 
space-dependent i n i a  moisture and time dependent supply rate. General formulae in terms of 
q u a d ”  we o w n e d  for the moisture content and for the time to ponding of the soil. 

The vertical non-hysteretic flow of water into soils has been described by Burgers equation 
in the case both of rigid soils [lJ and of swelling soils [2]. 

Indeed, the Burgers model provides analytic solutions which are in good agreement with 
the data obtained by experimental and numerical simulations, relative to the case of rigid 
(non-swelling) soils and to the preponding regime of moderately swelling soils [1,2]. 

Such agreement justifies the approximations of a constant diffusivity and a quadratic 
conductivity-water constant relationship, which characterize the Burgers model. 

However, all previous analysis treat only the case of a constant water supply rate at the 
surface, and of a constant (and special) value for the initial moisture content 

In this letter we extend the formalism to the case of generic timedependent rate and 
space-dependent initial moisture. We obtain explicit formulae (involving only quadratures) 
for the moisture content and for the time to ponding of the soil in this general case. As 
a particular example, the case of a linearly increasing rate is compared with the (known) 
case of a constant rate, in the situation characterized by an initially constant moisture (in 
the vertical direction), having the value at which the hydraulic conduction vanishes (see 
below). We start with the flow equation describing the non-hysteric water infiltration in a 
rigid or slowly swelling semi-infinite one-dimensional solid medium [l, 21: 

(1) 

where t is time and z is depth. In (1) 0 is the dimensionless moisture ratio 

0 = P m  - P) (2) 

with Q denoting the volumetric water constant. 

5 On leave while sewing as Secretary-Geneml. Pugwash Conferences on Science and World Affairs. Geneva- 
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The diffusivity D is assumed to be constant, and the hydraulic conductivity K(f i )  to 
obey the quadratic law 

K ( f i )  = -$A(fi - 6)’ ( 3 4  

dK - - = -A(O - I?) 
dfi 

with A and 6 positive constants. The value 6 corresponds to the position of the maximum 
in the K(O)  curve [2] and depends on the particular soil under consideration. At the free 
surface of the soil, z = 0, we assume that the water supply flux is a given function of time 

[-DO2 + K(fi)ll,,o = R(t) t > 0. (4) 

Moreover, we supplement (1) with a space dependent initial condition 

O(Z,  0) = Oo(z) z 2 0. (5) 

Here f i ~ ( Z )  is the antecedent water moisture; its value could be smaller or p a t e r  than 6, 
depending on the particular situation antecedent to the onset of the water supply. Insertion 
of (3b) into (1) yields the evolution equation 

fit = DOzn + A ( 0  - 6)Oz (6) 

with boundaty conditions (tiom (34 and (4)) 

De, + fA( f i  - &)* = -R(t) at z = 0. (7) 

We now introduce the dimensionless variables 

AS A282 
5 = - z  S = -  

2 0  40 

wifh 

d = r p , - 6  (Sb) 

where Os is a notional upper moisture value, corresponding to saturation (see below): 
moreover, we set 

Y(5, S )  = [?(z,  t )  - 7m. (84 

In terms of the dimensionless variables (8), the evolution equation (6) reads 

Yz = Y(t + 2YYt (9) 

with boundary condition 
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and initial condition 

Y(<, 0) = YOOCO = [8oo(z) - 81/S c > 0. (11) 

The initialhoundary value problem (9-1 1) is now solved by introducing the generalized 
Hopf-Cole transformation 131 

C(0) = 1. 

It is easily seen that this transformation maps (9) into 

'Pz = 'Ptt 

C(r) = 'Pt(0, i). 

Moreover, the boundary condition ( IOU)  and the initid condition (1 1) are mapped into the 
boundary condition 

'pt(0,r) = C(T)(Y{(O, r )  + Y?O, r))  = -C(r)F(r)  (14) 

and into the initial condition 

It is immediately seen that (13b) and (14) imply for the unknown function C(z) the evolution 
equation 

which, once integrated with the initial condition (12c), gives 

C(s) = exp [ - dr'F(r')]. (17) 

The solution q(<, 5 )  of the linear equation (13a) with boundary condition (14) and initial 
condition (15), can explicitly be obtained via the Fourier transform (originally invented just 
for this purpose!). It reads [4] 
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with C ( r )  give by (17) and rpo(q) given by (15). 
The solution v(<, r )  of the nonlinear equation (9) can finally be recovered from (12b), 

(17), (18) and (19). 
We now turn our attention to the determination of the time to ponding tp. The 

phenomenon of ponding at the soil surface can be observed for example during rainfall, 
when the rainfall rate exceeds the transport rate of water away from the soil surface; the 
latter is governed by the nonlinear convection term in (1). 

In our formalism, after some time t'= tp from the onset of the water supply the moisture 
ratio at the soil surface z = = 0 will eventually attain the saturation level 8%; ponding of 
free water will then occur at the soil surface for t > zp 

In our dimensionless units, we obtain from (8c) and (8b) 

Equation (124  then gives 

which in turn implies via (18) and (19) 

with 

From these formulae there obtains the equation that determines the time to ponding rp: 

= exp [ - l " d t F ( r ) ]  - lro d r  [ir(ip - r)I-"*F(r) exp - dr'F(r') . Er 1 
(23) 

Let us note that this equation contains as input data only the initial moisture configuration 
yo(<) (see (Is), ( I  I )  and (8)) and the rate of water supply at the surface F(r)  (see (10) and 
(8)). 

In this special case in which the initial condition for the moisture of the soil is constant 
and coincides with the value & at which the hydraulic conductivity K ( 8 )  vanishes (see (3)), 
so that 

* O K )  = 0 (24) 

(see (15) and ( I  I)), the formula (23) can be rewritten in the fol!owing neater form: 



~ ~ 
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This is the only case treated previously, with the additional assumption that the water supply 
flux R ( s )  be timeindependent 

R ( r )  = i?. 

In this case (see lob) 

F(r )  = F = [2/(ASz)]i? 

is also constant, and (25) reduces, of course, to the previously formula [Z] 

- i(~)1~2Erf[i(k'rp)'~z] = I 

where 

m 

is a regular, real function of y .  

t I . , C O  I , , , , , , . , I  , , , .,.,,I , , * ,,,,.I , , , # , 1 1 1  I 

10 -2 to 1 t o  1 02 
- I  

F 

Figure 1. The time to ponding rp and the total amount of fallen water Q CIS a function of the 
average water flux F.  Dotted line: constant Hux (see (26)). Solid line: l i n w l y  increasing Hux 
(see (28)). 
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To make a comparison with the previously known case, we keep the condition (24) but 
we assume the water supply rate to grow linearly from an initially vanishing value: 

R(r)  = k r  

F ( r )  = kl r 

ki = [2/(AS2)]k. 

Then (24) yields 

Equations (27) and (29) can be easily solved numerically. To compare the two cases, 
up to we plot in figure 1 the time to ponding T, as a function of the average water flux 

ponding 

7P F = r;’ Jd d r  F(r ) .  

Of course in the case of a constant flux, F coincides with the value (26b). 

the time sp, 
In figure 1 we also plot for the two cases the total amount Q of the water fallen up to 

- 
Q = Fr,. 

As expected, figure I shows that the time to ponding r, is a rapidly decreasing function 
of the water amount at the inlet. The decrease, however, is faster in the case of a constant 
supply rate. 
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